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A criterion to decide that some symmetries of a quantum system must be 
realized as antiunitary operators is given. It is based on some mathematical 
theorems about the second cohomology group of the symmetry group when 
expressed in terms of those of a normal subgroup and the corresponding factor 
group. It is also shown that this criterion implies that the only possibility for the 
unitary subgroup in the Galilean case is that generated by the space reflection 
and the connected component containing the identity; otherwise only massless 
systems would arise. 

1. I N T R O D U C T I O N  

In the usual  formula t ion  of q u a n t u m  mechanics  in Hi lber t  spaces, 
every symmetry  of a q u a n t u m  system is realized as uni ta ry  or an t iun i t a ry  
operator,  bu t  the ray rather  than  vector character  of the states shows that  
any  two such operators differing through a numer ica l  factor of modu lus  1 
mus t  be considered as the same operator.  In  other words, symmetries  of a 

q u a n t u m  system must  be realized as uni ta ry  or an t iun i t a ry  projective 
t ransformat ions:  consequent ly ,  a symmetry  group G must  be realized in 

the space of q u a n t u m  states by  means  of a semiuni tary  projective represen- 
ta t ion (hereafter SUPR).  The set of symmetries realized in a un i ta ry  way is 
a subgroup G u of index 1 or 2 which is called the un i ta ry  subgroup.  In  
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particular, when G is a connected Lie group the continuity of the represen- 
tation implies that G U = G. But in the general case G v is different from G 
and the computation of the SUPRs of the group G depends on the choice 
for the unitary group: more information about this question may be found 
in some of our previous papers (Carifiena and Santander 1975, 1979, 1980). 

How is this mathematical  problem related to physics? Sometimes, 
physical reasons may indicate which is the unitary subgroup in each case, 
but this ought to be properly done, with a minimum of assumptions, and 
we feel it worth spending a little time in the analysis of such a problem. 

The connected component  G o of a Lie group G is a normal subgroup; 
it will be contained in the unitary subgroup G u for every possible choice 
for G u. Each SUPR of G subduces a U P R  of G U and therefore one of G O 
(irreducibility may be lost in any of two steps). We will see that, depending 
on the choice for G v, not every U P R  of G O arises in such a process, and 
this fact may be enough to dismiss some of the possible choices for G u. 

In the following section a few mathematical  theorems are given; they 
are straightforward generalizations of Mackey's well-known results (1958) 
about  cohomology groups of semidirect product of groups when the action 
of G on T (the one-dimensional torus group) is nontrivial. Section 3 is 
devoted to show how these theorems, when properly used, lead in a natural 
way to the choice for G v in the case of the complete Galilean group 
(otherwise the representations describing massive elementary particles 
would not arise). The case of kinematic groups is analyzed in Section 4. 

2. T H E  MAIN T H E O R E M S  

As we are going to deal with SUPRs of a group G with respect to a 
closed subgroup G v of index 1 or 2, we must study their factor systems 
w ~ Z 2 . ( G , T ) ,  where the action of G on T is given by X g =)~ if g ~ G v ,  and 
X g =)t* if g ~ G  U, the asterisk standing for complex conjugation. 

There are some papers devoted to the study of how to determine a 
complete set of inequivalent factor systems of a group G through those of 
an invariant subgroup (van den Broek, 1976, and other references therein). 
In particular we will be interested in the case where the group G is a 
semidirect product group G =  H Q V. Then, every element of G can be 
expressed in only one way as a pair (a, a), with a E H  and a E V. Elements 
of H will be denoted by a, b, c . . .  and elements of V by a, r ,  y . . . . .  The 
composition law in G is (a, a)(b ,  f l ) = ( a b  ~, aft). The factor systems of G 
when the action of G on T is trivial have been studied by Mackey (1958) 
(see also Parthasarathy, 1969); a straightforward generalization of his 
results leads to the following theorem. 
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Theorem 1. Let ~0' be a factor system of G with respect to the 
subgroup Gu and let H v and V U denote the intersections H e, = H 
A Gu, Vu = VA G v, respectively: There exist an equivalent factor 
system ~o E Z 2 . (G,  T) which decomposes as a product  

r  fl)]~ A (b ,a ) ]  ~ (2.1) 

with ~Z2,(H~T), n~Z2,(V~T), while A: H x  V--->T is a Borel 
function such that 

l ~ ( a , , b , ) = [ ~ ( a , b ) l  ~ A(ab,  a) 
A(a,  ct)[ A(b, a ) ]  ab" 

A(a, [B(a, fl)] a:B 

(2.2a) 

(2.2b) 

In these formulas )t " and ?t" stand for )t (e' ~) and ~(~' ~), respectively. 

A detailed proof is given in Santander (1974). It follows the pattern of 
that of Parthasarathy (1969) and it will not be given here. It can also be 
done by a slight modification of the proof of Theorem 1 in the paper by 
van den Brock (1976). The function m in that paper is now m(a, f l )=e  
because of the semidirect structure; attention must be payed to the 
particular choice for the section r(a). 

Conversely, if actions of H and V on T are given, let G U be the 
subgroup of index 1 or 2 generated by the kernels of ineffectiveness of 
each action: 

Theorem 2. If ~EZ2,(H,T), T/~Z2,(V,T), and A is a Borel 
function satisfying the above relations (2.2), then ~0 defined by 
(2.1) is a cocycle ~EzE,(G,T). 

The proof of this theorem is a cumbersome but straightforward 
calculation, so that it is omitted. 

These two theorems are very useful in the case of a nonconnected Lie 
group which is a semidirect product  group such that G =  G O G %(G), G O 
being the connected component  of G. The normal subgroup G O is always 
contained in G v and therefore in this case the decomposition (2.1) reduces 
to [V= r 

r (a ,  tx), (b,  f l ) ]  = ~ ( a ,  b")~(ct, f l )A(b,  a)  (2.3) 
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where A: G•  V--->T is a Borel function satisfying 

A(ab, a) 
(2.4a) 

A(a, afl)=A(ae, a)[A(a, fl)] ~ (2.4b) 

Once ( and ~7 have been chosen, how many solutions A do exist for 
these equations? It would be interesting to know a necessary condition for 
the existence of (at least) one such A. The first equation provides such a 
condition: every a ~ V  defines an application %: Z2(Go,T)--)Z2(Go,T), 
0-,()(a,  b ) = ~ ( a  "- ' ,  b"- ' ) ;  this mapping is an endomorphism such that 
"r~[B2(Go,T)]cB2(Go,T), so that there is an induced homomorphism ~:  
H2(Go,T)--->H2(Go,T). With this notation the relation (2.4.a) may be 
rewritten as 

A(ab, a) 
[(%-,~).(~")-'](a, b)= A(a,a)A(b,a) 

Therefore, in order that a solution may exist, the factor system 
(%_ ,~ ) (~ ) -a  must be a trivial factor system. This fact is independent of 
the choice for 7/. The preceding results can be summarized in the following 
theorem. 

Theorem 3. With the above conditions and notations, the existence 
of a class ~ such that its restriction to G O and V= %(G) are ~ and 
~, respectively, does not depend on ~. A necessary condition for 
the existence of such ~ is that 

"7.-,~ = ~ ", V~ ~ V 

3. PARITY AND TIME REVERSAL IN "NONRELATIVISTIC" 
QUANTUM PHYSICS 

Let us see how these mathematical theorems can be useful. So, we 
choose a highly well-known group, the complete Galilean group. When 
semiunitary projective representations of this group are considered, the 
unitary subgroup is chosen to be ~v =~0 U ls~o, where I s denotes space 
inversion. The support for this choice is the analogy to the relativistic case 
of the complete Poincar6 group. We want to remark that there is an 
addi t ional--  and perhaps more compell ing--  reason: with a different choice 
for ~v the restriction of any irreducible SUPR of (~, ~v) to the connected 
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component would correspond to a "massless representation" of ~0. However 
these UPRs of ~0 have been shown to be unphysical. Furthermore, what 
about massive systems? 

In complete analogy to the structure of the complete Poincar6 group, 
the complete Galilean group is a nonconnected Lie group with four 
connected components: That containing the identity is a (normal) sub- 
group ~o which is called the orthochronous proper Galilean group. We will 
use throughout the notation of L6vy-Leblond's paper (1971): the element 
of 90 denoted by (b,a,v, R) will correspond to the transformation of R 4, 
x ' = R x + v t + a ,  t '=t+b.  The factor group 9/90 is Klein's group V=~ro(~ ), 
generated by space inversion 1 s and time inversion I r. Moreover, ~ is a 
semidirect product group 9 = ~0 (3 V, the action of V on 9 o being 

Is: (b,a,v, R)---~(b, - a ,  - v ,  R), I~: (b,a,v,  R)-->(- b,a, - v ,  R) 

What can we tell about the candidates for the unitary subgroup? It 
must be a closed subgroup of index 1 or 2, including the connected 
component 90: there are four possible choices 

(i) 9 v = ~  
(ii) 6v = 9o tA Is9 o 

(iii) 9 v = 9 o U Ir~o 
(iv) 9v = % u ls~.~o 

Before making up our mind, we begin by studying the second 
cohomology group HZ(SO3(R),T) of the unimodular orthogonal group in 
three dimensions. It is a compact and connected Lie group; in this case 
(Moore, 1964, Proposition 2.1), the second cohomology group is the group 
of two elements, C2. Its elements will be denoted by [l] with l= + 1. An 
arbitrary but fixed lifting of the class [ -1 ]  taking the values + 1 will be 
denoted ~_ 1" 

The second cohomology group of ~0 is H2(9o,T)= R|  z (Bargmann, 
1954; Brennich, 1970). The element [M, l] will be the class of the factor 
system 

~m,,((b',a',v', R ') , (b,a ,v,  R)) = ~'t(R', R)exp[ iM(�89 '2 +v'R'a) ] 

The group 9 is a semidirect product group and then the method of 
finding H2.(9 ,T)  indicated in the preceding section may be used. In the 
case we are dealing with, once a factor system ~EZ2(~o,T) has been 
chosen, is there any Borel function A: 9 ~ T  satisfying the relation (2.4a)? 
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The answer is as follows: If the test of Theorem 3 is used, the factor 
systems ~'Is~, ~'zT~, and ~'zsT~ are given by 

('rzs~)(g',g)=~(g',g) 

g) = [ g)]* 

(0 - ,~) (g ' ,  g ) =  [ #(g' ,  g ) ]*  

that is to say, :Cls[M, I ]= [M, / ] ,  ;tIT[M, I ]= [ - -M, / ] ,  and ;CZs~,[M, l]= 
[-M,l].  

A direct use of Theorem 3 shows that the choices 9 v = 6, 6 U = 9 0 U 
I t9 o, and 9 v =9 0 Wls~9 o must be put away from our mind because they 
would only permit factor systems where the 9 0 part have M=O; if any of 
such choices is done, "massive systems" will not arise. 

4. SPACE AND TIME INVERSION IN KINEMATIC GROUPS 

In the case of Poincar6 group the former test gives us no information. 
In fact, H2(P0,T) = C2; the factor systems are given by 

~z((b',a',v', R ' ) , (b ,a ,v ,  R))=~z(R' ,  R) 

and the action of V=~ro(~) on P0, a: (b,a,v, R)---~(b~,a~,v ~, R~), is such 
that R ~ =R ,  and therefore it  is real and ~'~z =~l V a E  V. 

What can we tell about space reflection and time reversal in other 
kinematic groups (Bacry and L6vy-Leblond, 1968)? There are two kinds of 
kinematic groups: those of "relative time" such as de Sitter (S _+), Poincar6 
(P),  para-Poincar6 (~ ') ,  inhomogeneous orthogonal four-dimensional 
[10(R,4)], and Carrol (E) groups, and those of absolute time such as 
Newton-Hooke (N), Galilean (9), para-Galilean (9'), and static groups 
(E). The second cohomology group HZ(Go,T) depends on this classifica- 
tion: if G O is a connected "relative time" kinematic group, H2(G0, T)=  Cz, 
while if it is a connected "absolute time" kinematic group, H2(Go,T)= R| 
G. 

If the elements of the kinematic groups are denoted (b, a, v, R), a 
lifting of the factor system in each case is given by 

~z((b',a',v', R'), (b,a,v,  R))=~z(R', R) if G is a relative time group 

~[M, Zl((b',a',v', R ' ) , (b ,a ,v ,  R))=exp[iMf~o(g ' ,  g)]  .~'z(R', R) 

if G is an absolute time group 
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where fc is the corresponding factor displayed in the following table: 

fCo((b',a',v', R ' ) , (b ,a ,v ,  R)) 

N +  

$ 

l [ a ' 2  ] b b b b i b  
___-~ --~. +~v '2 sin _+ ~cos+_--~_ + a'v' sin2+_~.-- +v 'R 'acos  § + a'R'a ~" sin +_~.- 

5oa + a'R'v 

1 ~2 ~bv + v'R'a 

v'R'a 

These explicit forms of the factor systems show that in an "absolute 
time" kinematic group the only possible choice for the unitary subgroup is 
Gv = Go U IsGo, such as in the Galilean case. On the other hand, in the 
case of a "relative time" kinematic group, the theorems we have considered 
will give no information about the unitary subgroup. If the choice G v = 
Go U IsGo is made, the second cohomology groups which are necessary in 
the search for a representation group are, respectively, 

H 2 �9 (G, T) = C2@ (C2@ C 2 ) if G is a relative time group 

H 2 , ( G , T ) = ( R | 1 7 4 1 7 4  if G is an absolute time group 

as a direct application of Theorem 1 and a further study of the equivalence 
of factor systems fairly quickly show. 
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